CSE 451: Operating Systems
Winter 2026

Module 3
Components and Structure

Gary Kimura

But first, a debugging aid

Printf is your friend.

OS work and C in particular is memory/address
oriented. It is often useful to print out the address of
a value in addition to its content

printf (M [%$016x] %$x”, (int)&p->Field, p->Field);

And oftentimes | wondered where the printf was
located

printf (“[%s:%d]”, FILE , LINE);

Your mileage may vary

OS structure

« The OS sits between application programs and the
hardware
— it mediates access and abstracts away ugliness
— programs request services via traps or exceptions
— devices request attention via interrupts

User Apps

e

Operating System

Firefox Photoshop || Acrobat Java
Application Interface (API)

File Memory Process Network
Systems Manager Manager Support
Device Interrupt Boot &

Drivers Handlers Init

~

a1qe1I0d

Hardware Abstraction Layer

Hardware (CPU, devices)

[Command Interpreter

)

]
Information Service
(nform n /rw(/ \\

[Error Handling

File System

Accounting Sys‘rerrj

A\

/ré‘rec‘rion Syst

/ [/

Process Management

170 System

Secc;ndar'y Storage
Management Managerpent
ir\é/ /

Major OS components

processes/threads

memory

/O

secondary storage

file systems

protection

shells (command interpreter, or OS Ul)
GUI

networking

Process management

« An OS executes many kinds of activities:
— users’ programs
— batch jobs or scripts
— system programs
 print spoolers, name servers, file servers, network daemons, ...
« Each of these activities is encapsulated in a process

— a process includes the execution context
« PC, registers, VM, OS resources (e.g., open files), etc...
 plus the program itself (code and data)

— the OS’s process module manages these processes
 creation, destruction, scheduling, ...

Important. Processes vs. Threads

e Soon, we will separate the “thread of control” aspect
of a process (program counter, call stack) from its
other aspects (address space, open files, owner,
etc.). And we will allow each {process / address
space} to have multiple threads of control.

« But for now — for simplicity and for historical reasons
— consider each {process / address space} to have a
single thread of control.

Program/processor/process

* Note that a program is totally passive
— just bytes on a disk that encode instructions to be run

« A process is an instance of a program being
executed by a (real or virtual) processor

— at any instant, there may be many processes running copies
of the same program (e.g., an editor); each process is
separate and (usually) independent

— Linux: ps -auwwx to list all processes

process A process B
code page code page
stack tables stack tables
PC PC
registers resources registers resources

States of a user process

interrupt

interrupt

trap or
exgeption

10

Process operations

« The OS provides the following kinds operations on
processes (i.e., the process abstraction interface):

create a process

delete a process

suspend a process

resume a process

clone a process

inter-process communication
iInter-process synchronization
create/delete a child process (subprocess)

11

Memory management

The primary memory is the directly accessed storage
for the CPU

— programs must be resident in memory to execute

— memory access is fast

— but memory doesn’t survive power failures

OS must:

— allocate memory space for programs
— deallocate space when needed by rest of system
— maintain mappings from physical to virtual memory

» through page tables
— decide how much memory to allocate to each process

 a policy decision
— decide when to remove a process from memory

« also policy

12

/0

A big chunk of the OS kernel deals with I/O

— hundreds of thousands of lines in Windows, Unix, etc.

The OS provides a standard interface between
programs (user or system) and devices
— file system (disk), sockets (network), frame buffer (video)

Device drivers are the routines that interact with
specific device types

— encapsulates device-specific knowledge

* e.g., how to initialize a device, how to request I/O, how to
handle interrupts or errors

« examples: SCSI device drivers, Ethernet card drivers, video
card drivers, sound card drivers, ...

Note: Windows has ~35,000 device drivers!

13

Secondary storage

Secondary storage (disk, FLASH, tape) is persistent
memory

— often magnetic media, survives power failures (hopefully)
Routines that interact with disks are typically at a very
low level in the OS

— used by many components (file system, VM, ...)

— handle scheduling of disk operations, head movement, error

handling, and often management of space on disks
Usually independent of file system
— although there may be cooperation

— file system knowledge of device details can help optimize
performance

* e.g., place related files close together on disk

14

File systems

Secondary storage devices are crude and awkward
— e.g., ‘write a 4096 byte block to sector 12”

File system: a convenient abstraction

— defines logical objects like files and directories
* hides details about where on disk files live

— as well as operations on objects like read and write
» read/write byte ranges instead of blocks

A file is the basic unit of long-term storage
— file = named collection of persistent information

A directory is just a special kind of file

— directory = named file that contains names of other files and
metadata about those files (e.g., file size)

Note: Sequential byte stream is only one possibility!

15

File system operations

* The file system interface defines standard operations:
— file (or directory) creation and deletion

— manipulation of files and directories (read, write, extend,
rename, protect)

— COpy
— lock
* File systems also provide higher level services
— accounting and quotas
— backup (must be incremental and online!)
— (sometimes) indexing or search
— (sometimes) file versioning

16

Protection

Protection is a general mechanism used throughout
the OS

— all resources needed to be protected
* memory

processes

files

devices

CPU time

— protection mechanisms help to detect and contain
unintentional errors, as well as preventing malicious
destruction

17

Command interpreter (shell)

A particular program that handles the interpretation of
users’ commands and helps to manage processes

— user input may be from keyboard (command-line interface),
from script files, or from the mouse (GUIs)

— allows users to launch and control new programs

On some systems, command interpreter may be a
standard part of the OS (e.g., MS DOS, Apple II)

On others, it's just non-privileged code that provides
an interface to the user
— e.g., bash/csh/tcsh/zsh on UNIX

On others, there may be no command language
— e.g., MacOS

18

OS structure

together:

 It's not always clear how to stitch OS modules

Command Interpreter]

el
(Information Sy%

N

[Error Handling
77 7 N\

/" tection Syst

/

Process Management

File SysTem

Accounting Sys‘rerrj

|/

Secc;ndar'y Storage
Management Managerpent
ir\é

.

170 System

19

OS structure

* An OS consists of all of these components, plus:
— many other components
— system programs (privileged and non-privileged)
* e.g., bootstrap code, the init program, ...
* Major issue:
— how do we organize all this?
— what are all of the code modules, and where do they exist?
— how do they cooperate?

« Massive software engineering and design problem

— design a large, complex program that:

» performs well, is reliable, is extensible, is backwards
compatible, ...

20

Windows Longhorn slips again,
becomes megaproject

By John Lettice
Published Tuesday 25th June 2002 10:55 GMT

Vista debut hits a delay

By Ina Fried

Staff Writer, CNET News.com

Published: March 21, 2006, 3:01 PM PST
Last modified: March 21, 2006, 3:13 PM PST

[TalkBack [FAE-mail (=) Print 4® del.icio.us Digg this

update Microsoft on Tuesday announced a delay of Windows
Vista that will mean PCs with the new operating system won't go
on sale until January.

The software maker said it will still wrap up development of the operating
system this year and make it available to volume-licensing customers in
November. However, Microsoft said a delay of a few weeks in Vista's
schedule meant that some PC makers would be able to launch this year
and others would not. As a result, Windows chief Jim Allchin said the
company is delaying the broad launch of the product until January.

21

Early structure: Monolithic

« Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

usSer programs

0OS everything

hardware

Monolithic design

* Major advantage:
— cost of module interactions is low (procedure call)

* Disadvantages:
— hard to understand
— hard to modify
— unreliable (no isolation between system modules)
— hard to maintain

« What is the alternative?

— find a way to organize the OS in order to simplify its design
and implementation

Layering

The traditional approach is layering

implement OS as a set of layers

— each layer presents an enhanced ‘virtual machine’ to the layer above
The first description of this approach was Dijkstra’s THE system

Layer 5. Job Managers

« Execute users’ programs
Layer 4: Device Managers

« Handle devices and provide buffering
Layer 3: Console Manager

* Implements virtual consoles
Layer 2: Page Manager

* Implements virtual memories for each process
Layer 1: Kernel

» Implements a virtual processor for each process
Layer 0: Hardware

Each layer can be tested and verified independently

24

Problems with layering

* |Imposes hierarchical structure

— but real systems are more complex:
« file system requires VM services (buffers)
« VM would like to use files for its backing store

— strict layering isn’t flexible enough

« Poor performance
— each layer crossing has overhead associated with it

* Disjunction between model and reality
— systems modeled as layers, but not really built that way

25

Hardware Abstraction Layer

* An example of layering in modern
operating systems

» (Goal: separates hardware-specific
routines from the “core” OS
— Provides portability
— Improves readability

Hardware Abstraction
Layer
(device drivers,
assembly routines)

26

Microkernels

Introduced in the late 80’s, early 90’s
— recent resurgence of popularity

Goal:

— minimize what goes in kernel
— organize rest of OS as user-level processes

This results in:
— better reliability (isolation between components)
— ease of extension and customization
— poor performance (user/kernel boundary crossings)

First microkernel system was Hydra (CMU, 1970)

— Follow-ons: Mach (CMU), Chorus (French UNIX-like OS),
OS X (Apple)

27

Microkernel structure illustrated

user firefox powerpoint
processes . apache photoshop c
itunes word 2
@®
3
[fie system] ~ [network] 3
system e
processes [threads | [scheduling|
communication 3 g
microkernel low-level VM processor 8_ =
protection control o D

hardware

28

User <
mode

Kernel
mode

<

EXAMPLE: WINDOWS

Appllcatlon program

Photo-
shop

Windows—including scheduling, memory
management, process management, file system,
device drivers (I/0) and much, much more

29

ARCHITECTURE OF MINIX 3

User

1N
clelclclcI®

X

Microkernel handles interrupts,

processes, scheduling, IPC

Process

30

Virtual Machine Monitors

Type-1 VMM
(Hypervisor)

Windows Server
virtualization
(WSv)

Xen

VMWare ESX

« Transparently implement “hardware” in software

* Voila, you can boot a “guest OS”
31

Summary and Next Module

« Summary

— OS design has been an evolutionary process of trial and
error. Probably more error than success

— Successful OS designs have run the spectrum from

monolithic, to layered, to micro kernels, to virtual machine
monitors

— The role and design of an OS are still evolving
— It is impossible to pick one “correct” way to structure an OS
* Next module

— Processes, one of the most fundamental pieces in an OS
— What is a process, what does it do, and how does it do it

32

